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Abstract. The problem of thermal explosion in a flammable gas mixture with addition of volatile fuel droplets
is studied based on the asymptotic method of integral manifolds. The model for the radiative heating of droplets
takes into account the semitransparency of droplets. A simplified model for droplet heat-up is used. The results of
the analysis are applied to the modelling of thermal explosion in diesel engines. Two distinct dynamical situations
have been considered, depending on the initial droplet concentration. These are ‘far zone’ (small initial liquid
volume fraction and small droplet radii) and ‘near zone’ (large initial liquid volume fraction and large droplet
radii). The conditions of the first zone are typical for the areas in the combustion chamber which are far from
the fuel injectors, while the conditions of the second zone are typical for the areas in the combustion chamber
which are relatively close to the fuel injectors. It has been pointed out that small droplets’ heating and evaporation
time in the far zone is smaller than the chemical ignition delay of the fuel vapor/air mixture. The total ignition
delay decreases with increasing initial gas temperature. In the near zone for large droplets, the process starts with
the initial gas cooling and slight heating of droplets. This is followed by a relatively slow heating of gas due to
the chemical reaction, and further droplet heating. The total ignition delay in the near zone is larger than in the
far zone. It is expected that before thermal explosion in the near zone takes place, the droplets break up and are
removed from this zone. In optically thick gas effects of thermal radiation are negligible for small droplets but are
noticeable for large droplets.
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1. Introduction

The problem of thermal explosion of flammable gas containing fuel droplets, and its numerous
applications, have been widely discussed in the literature [1, Chapter 6], [2]. Semenov [3] was
perhaps the first to develop the basic theory of the phenomenon of thermal explosion. Since
that time more and more complicated models have been suggested 4 [5, Chapters 10–12],
[6], [7, Chapter 7], [8], [9]. The analysis of these models has been mainly performed using
modern computers. They have been incorporated into various CFD packages and allowed
to take into account heat and mass transfer and combustion processes in the mixture of gas
and fuel droplets in a self-consistent way [10–13]. This approach, however, is not particularly
helpful in aiding understanding of the relative contribution of various processes. An alternative
approach to the problem is to analyze the equations in some limiting cases. This cannot replace
CFD methods but can complement them. For example, the geometrical asymptotic method
of integral manifolds can be used [14]. This method was successfully applied to modeling
self-ignition problems [15–18].
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Sazhin et al. [19] applied this method to the specific problem of modeling the ignition
process in diesel engines [20]. These authors attempted to combine the analytical approach,
based on the integral-manifold method, and CFD simulations of the process, based on the
CFD package VECTIS. The analytical analysis in this paper took into account both convect-
ive and radiative heating of droplets, but it was assumed that the droplet temperature was
constant (heat-up period had been completed). The radiative-heating model used in this paper
was based on the assumption that fuel droplets are grey opaque spheres. Also, the chemical
reaction term, used in the analytical model, was assumed in the one-step Arrhenuis form.
The latter might be a serious oversimplification as the combustion process in diesel engines
involves hundreds of species and chemical reactions [21–24]. The analysis of these reactions
is beyond the capacity of most CFD codes and a number of reduced mechanisms have been
suggested [25–27]. One mechanism widely used in CFD codes is the so-called Shell model
[28]. Sazhin et al. [19] attempted to approximate the contribution of the reduced chemistry,
described by the Shell model, in the enthalpy equation in the Arrhenuis form with the time-
dependent pre-exponential factor A(t). However, this had limited success as the function A(t)

implicitly depended on fuel vapor and oxygen concentrations. The main argument supporting
the application of the Arrhenuis form of the chemical term is that the physical ignition delay
for average sized droplets in diesel engines (due to heating and evaporation of droplets) is
generally longer than the chemical ignition delay (due to chemical reactions, [13]).

The present paper is focused on further development of the model used in [19]. Firstly, the
assumption that droplets are opaque gray spheres is replaced by a more realistic assumption
that droplets are semi-transparent spheres. Secondly, the process of droplet heat-up is taken
into account. Thirdly, the equations are investigated for a wide range of parameters typical for
diesel engines (not just average values as done in [19]).

The problem of droplet heating taking into account their semi-transparency has been con-
sidered in [29] [30, Chapter 2]. The models developed by these authors, however, were too
complicated not only for analytical studies, but also for implementation into CFD codes.
Dombrovsky et al. [31] seem to be the first to describe the process in a form simple enough for
implementation into CFD codes and analytical studies. Their model is based on the geomet-
rical optics approximation, which is valid for typical diesel-fuel droplets with radii more than
about 3 µm. The final expression for the absorption coefficient of droplets was presented in the
form

(
a Rb

d

)
, where Rd is droplet radius, a and b are quadratic functions of gas temperature.

This model is used in our paper.
The problem of droplet heat-up is well known and has been widely discussed in the lit-

erature [32, 7]. In our case, however, we are not interested in the details of the process, but
just need to take into account the fact that, at the initial stage (droplet temperature is equal to
room temperature), all heat is spent on droplet heating. When the droplet temperature becomes
equal to the boiling temperature all heat is spent on droplet evaporation. A simplified model
originally suggested in [33] takes into account both of these effects. This will be used in our
paper.

The analytical analysis reported in [19] was based on average values of parameters in
diesel engines. These values, however, can vary by several orders of magnitude within the
combustion chamber [20]. This will be taken into account in the present paper. The focus will
be on the initial stage of the thermal explosion. Two main dynamical scenarios, depending on
the initial concentration of the fuel droplets, will be identified. These correspond to two zones
in the combustion chamber: a far zone (far from the droplet injector), where the initial droplet
concentration is low, and a near zone (close to the droplets injector), where the initial droplet
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concentration is high. Note that the immediate vicinity of the nozzle, where liquid jet has not
yet disintegrated into droplets, is beyond the scope of our analysis.

The main equations and approximations, used in the analysis, are presented and discussed
in Section 2. In Section 3 these equations are presented in dimensionless forms convenient
for analytical analysis. Analysis of the equations, using the asymptotic method of invariant
manifolds, is presented in Section 4. The results of this section are then applied to the analysis
of the ignition process in conditions relevant to diesel engines (Section 5). The main results
of the paper are summarized in Section 6.

2. Problem statement

The following main physical assumptions have been used. The combustible gas mixture con-
tains evaporating ideal spherical droplets of fuel. These liquid droplets form a mono-disperse
spray, and the medium is assumed to be spatially homogeneous. We ignore the variations in
pressure in the enclosure, and their influence on the combustion process. Heat flux from the
burning gas to droplets is assumed to consist of two components: convection and radiation.
The energy needed for heating fuel vapor from the droplet temperature to gas temperature is
ignored. We assume that the thermal conductivity of the liquid phase is much greater than that
of the gas phase and the volume fraction of the liquid phase is much less than that of the gas
phase. The heat-transfer coefficient in the liquid-gas mixture is assumed to be controlled by
the thermal properties of the gas phase. External heat losses are ignored (adiabatic approach).
Fuel drops are semi-transparent and the diffraction parameter is large (geometrical-optics
approximation is valid). Combustion takes place in the gas phase only. Combustion is modeled
as a one-step first-order exothermic reaction with gaseous fuel as a deficient reactant. Droplets
are assumed to be stationary or almost stationary (Re � 1) [34].

Under these assumptions we can write the energy balance equation for the gas phase in the
following general form

Cpgρgϕg

dTg

dt
= cf Qf µf ϕgA exp

(
− E

RuTg

)
− 4πR2

dnd (qc + qr) , (1)

where T is the temperature (K), cf the molar concentration of the combustible component in
gaseous mixture (kmol/m3); Rd the radius of the droplets (m), A a constant pre-exponential
factor (1/s), E the activation energy (J/kmol), Ru the universal gas constant, C the specific heat
capacity (J/kg/K), ϕ the volumetric phase content (dimensionless); ρ the density (kg/m3), q

the heat flux (W/m2); µ the molar mass (kg/kmol); Qf the specific (per unit mass) combustion
energy (J/kg); nd the number of droplets per unit volume (1/m3); t the time. Subscripts: g

refers to gas mixture; f refers to combustible gas component of the mixture (fuel); d refers to
liquid droplets; p refers to constant pressure; r refers to radiation; c refers to convection.

The variations of gas density with time are ignored. This is justified by the fact that spray
injection in diesel engines takes place near the top dead center when density variations are
minimal.

The heat depleted as a result of gaseous fuel burning is spent on the fuel droplets heating
and their further evaporation. The droplet average temperature equation reads as:

Cdmd

dTd

dt
= 4πR2

d (qc + qr ) ζ(Td), (2)
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where md is the droplet mass, the right-hand side of Equation (2) becomes zero when the
liquid-fuel temperature reaches the boiling point Tb. The parameter ζ(Td) takes into account
the fraction of heat spent on droplet heating. Following [33] it is taken in the form:

ζ(Td) = Tb − Td

Tb − Td0
, (3)

where Tb, Td and Td0 are the boiling, current and initial temperatures of droplets, respectively;
ζ(Td) decreases from 1 to 0 when Td increases from Td0 to Tb. This reflects the decrease of
heat spent on droplet heating when the droplet temperature increases. The range of Td under
consideration is the interval [Td0, Tb].

The rate of fuel evaporation is described as:

dmd

dt
= −4πR2

d

L
(qc + qr ) (1 − ζ(Td)) , (4)

where L is the latent heat of evaporation (J/kg); we took into account that the fraction of heat
spent on droplet evaporation is proportional to (1 − ζ(Td)).

The combustible gas-component content is controlled by oxidation (flammable substance
consumption) and droplet evaporation (fuel vapor source). We assume that the gas represents
a well-stirred combustible mixture. The combustible gas concentration equation is given by:

ϕg

dcf

dt
= −cf ϕgA exp

(
− E

RuTg

)
+ 4πR2

dnd

Lµf

(qc + qr) (1 − ζ(Td)) . (5)

Remembering our assumption that Re � 1, we have Nu = 2 [35, Chapter 22], [36]. This
allows us to simplify the expression for qc to the term, proportional to the difference between
gas and droplet temperatures. The coefficient can be derived on the basis of the external heat-
transfer problem for the droplet (see for example [1]). The expression reads:

qc = λg

Rd

(Tg − Td), λg =
√

Tg

Tg0
, (6)

where λg0 is the gas thermal conductivity at Tg = Tg0.
In deriving Equation (6), we took into account the temperature dependence of the gas

thermal conductivity [35, Chapter 9]. The approximation Nu = 2 is expected to be valid in
most of the diesel-engine combustion chamber, where the relative velocity of droplets and
entrained air is expected to be small [34]. This approximation can be poor near the nozzle
(fuel injector), where the dependence of Nu on Re needs to be taken into account.

The expression for qr can be written as qr = σ Qai

(
T 4

ext − T 4
d

)
, where σ is the Stefan-

Boltzmann constant, Qai is the average efficiency factor of absorption, Text is the external
temperature (alternative presentations of qr were discussed in [37, 38]. In the case of an op-
tically thick gas we can assume that Text = Tg . Otherwise, Text can be considered as constant,
and the whole analysis would be simplified. The values of Qai depend on the physical model
chosen. Following [31] we use the following approximate expression Qai = a Rb

d , where a

and b are quadratic functions of the external (gas) temperature. This expression was derived
by curve fitting for 5 µm ≤ Rd ≤ 50 µm 5 and 1000 K ≤ Tg ≤ 3000 K (realistic values for
diesel engines). The analysis will be focused mainly on the case of an optically thick gas when
Text = Tg. Parameter b is a rather weak function of Tg and we can assume that b = 0·6. The
expression for a as the first approximation can be presented as a linear function in the form
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a = 103k01 − k11Tg. The values of k01 and k11 depend on units of Rd . If (µm) are used then
k01 = 7 × 10−5, k11 = 2 × 10−5 K−1; if (m) are used then k01 = 0·28, k11 = 0·08 K−1. As a
result the expression for qr reads:

qr = σRb
d

(
103k01 − k11Tg

) (
T 4

g − T 4
d

)
. (7)

More accurate approximations for a and b in a wider range of droplet radii and gas temperat-
ures, and for various diesel fuels were reported in [39]. Equation (7) is consistent with these
new results. Results of application of the expression Qai = a Rb

d in a CFD code were reported
in [40].

The system of governing equations is closed with the initial conditions of the form:

t = 0 : Tg = Tg0; Td = Td0; cf = cf 0; Rd = Rd0. (8)

The contribution of surface tension is ignored. Even for extremely small diesel fuel droplets
with radii about 10−6 m, the surface-tension effects are expected to increase the pressure inside
the droplets by less than 1%.

3. Non-dimensionalization

Equations (1)–(7) can be rewritten in the dimensionless form:

γ
dθg

dτ
= HHR(η, θg) − ε1 r HHL(r, θg, θd), (9)

dη

dτ
= −HHR(η, θg) + ψf ε1 r (1 − ζ (θd))HHL(r, θg, θd), (10)

dθd

dτ
= ε3

r2
HHL(r, θg, θd)ζ (θd) , (11)

dr3

dτ
= −ε1ε2 rHHL(r, θg, θd) (1 − ζ (θd)) . (12)

The term HHR is responsible for heat release due to exothermic chemical reaction:

HHR(η, θg) = η exp

(
θg

1 + βθg

)
. (13)

The term HHL reflects the impact of internal heat losses in the system under consideration (via
convection and radiation):

HHL(r, θg, θd) =
[(

θg − θd

) √
1 + βθg + ε4

4β
rb+1 (

ν − (
1 + βθg

)) ((
1 + βθg

)4

− (1 + βθd)
4
) ]

. (14)

The parameter ζ (θd) is the modified form of the parameter (3), and it is given by:

ζ (θd) =
(

θb − θd

θb − θd0

)
. (15)
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The following dimensionless parameters have been introduced:

β = RuTg0

E
, γ = CpgTg0ρg0

c′
f 0Qf µf

β, c′
f = ϕdρd0

µf

, ε1 = 4πRd0λg0ndTg0β exp(1/β)

Ac′
f Qf µf ϕg

,

ε2 = c′
f Qf µf ϕg

(4/3)πR3
d0ndρd0L

, ε3 = 3λg0 exp(1/β)

ACdρd0R
2
d0

, ε4 = 4σk11T
4
g0R

b+1
d0

λg0
, ψf = Qf

L
,

ν = k01103

k11Tg0
, φg = Tg − Tg0

βTg0
, φd = Td − Tg0

βTg0
, η = cf

c′
f

, r = Rd

Rd0
, τ = t

treact
,

treact = A−1 exp(1/β).

(16)

Here treact is the time required for the reactant concentration to fall by a factor (e) from its initial
value under the isothermal conditions; c′

f is the fuel vapor concentration after all droplets have
evaporated but not burnt.

Parameters β and γ are the conventional parameters of the Semenov theory of thermal ex-
plosion [3]: β is the reduced initial temperature, γ represents the final dimensionless adiabatic
temperature of the thermally insulated system after the explosion has been completed. Char-
acteristic values of the parameters β and γ are small compared with unity for most gaseous
mixtures due to the high exothermicity of the chemical reaction and high activation energy.
Parameter ε1 describes the competition between the combustion and evaporation processes.
Parameter ε2 relates the heat released during combustion and energy needed to evaporate all
fuel droplets. Parameter ε3 is the ratio of treact and the characteristic droplet heating time.
Parameter ε4 is proportional to the ratio of radiative and convective fluxes. Parameter ψf

shows the characteristics of the fuel (ratio of specific combustion energy and latent heat of
vaporization). For diesel fuels ψf � 1.

For applications in diesel engines we also can assume that the initial concentration of
gaseous fuel inside the combustion chamber is small, so that η0 = 0. Under this assumption
the initial conditions (8) are given in dimensionless form by:

τ = 0 : θg = 0; θd = θd0; η = 0; r = 1. (17)

4. Analysis

The system of Equations (9)–(12) together with the initial conditions (17) can be solved
numerically. Although these solutions can be useful for engineering applications, they have
a number of limitations, as discussed in the Introduction. In the present paper an alternative
approach to the analysis of the system of Equations (9)–(12), (17) will be used. This will be
based on the asymptotic method of invariant manifolds developed in [14]. In this method a sys-
tem of ODEs is treated as a multi-scale system with a small parameter, and includes slow and
fast subsystems. The dynamic behavior is described by the typical system trajectories, which
in turn can be predicted using the slow invariant manifold. A trajectory can be decomposed
into ‘fast’ parts (away from the slow manifold) and ‘slow’ parts (in the neighborhood of the
slow manifold). The slow invariant manifold can be found in powers of the small parameter.
The analysis of the present paper is restricted to the zeroth-order approximation of the slow
invariant manifolds. The zeroth-order approximation of the slow invariant manifold is called
the slow surface.
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For the system of Equations (9)–(12) two integrals can be found. To obtain one of the
integrals, Equations (11) and (12) are combined to give:

dθd

dr3
= − ε3

ε1ε2

1

r3

ζ (θd)

1 − ζ (θd)
.

Integration of this equation subject to the initial condition (17) gives a relation between the
temperature and radius of the droplets:

r3 (θd) =
[

e(θd−θd0)

(
θb − θd

θb − θd0

)(θb−θd0)
] ε1ε2

ε3

. (18)

To find the second integral of the system, Equations (9) and (10) are combined as:

d
(
γ θg + η

)
dτ

= ε1 r
(
ψf (1 − ζ (θd)) − 1

)
HHL(r, θg, θd).

This equation can be now combined with Equations (11) or (12) to give:

d
(
γ θg + η

)
dθd

= ε1

ε3
r3 (θd)

(
ψf (1 − ζ (θd)) − 1

)
ζ (θd)

,

with r3 (θd) given by Equation (18). Integration of the last equation subject to the initial
conditions (17) gives:

η
(
θg, θd

) = −γ θg + ε1

ε3

θd∫
θd0

r3 (s)

(
ψf (1 − ζ (s)) − 1

)
ζ (s)

ds. (19)

Equations (18) and (19) can replace Equations (12) and (10), respectively. This reduces the
original system (9)–(12) to the two-dimensional system (9) and (11) in the

(
θg, θd

)
-plane,

together with the additional functional relations (18) and (19).
We will concentrate on analyzing the delay regimes, i.e., regimes characterized by a delay

period before the occurrence of the final blow-up. These are particularly important for the
applications. An important feature of such regimes is that their time histories are determined
by the very initial stages of the thermal explosion when the temperatures are comparatively
low (θg ∝ O(1)). Remembering that β � 1, this allows us to apply the Frank-Kamenetskii
approximation [41]:

exp

(
θg

1 + βθg

)
≈ exp

(
θg

)
.

The additional simplification used in this paper is a zeroth-order approximation of the heat-
loss function HHL with respect to the small parameter β (this also works well at comparatively
low temperatures where βθg < 1). Under these assumptions, Equations (13)–(14) can be
re-written as:

HHR(η, θg) ≈ H FK
HR

def= η exp
(
θg

)
, (20)

HHL(η, θg, θd) ≈ H
app
HL

def= (
θg − θd

) [
1 + ε4 (ν − 1) rb+1

]
. (21)
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Figure 1. The slow lines and the phase trajectory IM
in

(
θd, θg

)
space for the system of Equations (22)–(24)

(far zone). Arrows show stability of the slow lines.

Figure 2. The slow curve and the phase trajectory INTE
in

(
θd , θg

)
space for the system of Equations (22)–(24)

(near zone). Arrows show stability of the slow curve.
The value θT

d
lies in the interval (θd0, θb).

The reduced system is given by:

γ
dθg

dτ
= H FK

HR

(
η

(
θg, θd

)
, θg

) − ε1 r (θd) H
app
HL

(
r (θd) , θg, θd

) def= F
(
θg, θd

)
, (22)

dθd

dτ
= ε3

r2 (θd)
H

app
HL

(
r (θd) , θg, θd

)
ζ (θd)

def= G
(
θg, θd

)
, (23)

subject to

τ = 0 : θg = 0; θd = θd0, (24)

where H FK
HR , H

app
HL , η

(
θg, θd

)
and r (θd) are given by Equations (20), (21), (19) and (18),

respectively.
The integral manifolds method can be applied to the analysis of the initial-value problem

(22)–(24) in the phase-plane
(
θg, θd

)
if one of the variables is fast while the other is slow. The

initial hierarchy of the system is determined by the ratio ε3γ /ε1. This is the ratio between volu-
metric heat capacities of the gaseous and liquid phases: ε3γ /ε1 = (

Cpgρg0ϕg0
)
/ (Cdρdϕd0).

The analysis will be performed for ε3γ /ε1 � 1 and ε3γ /ε1 � 1.

4.1. THE CASE ε3γ /ε1 � 1

In this situation initially θd is a rapidly varying variable, and θg is a slowly varying variable.
The slow curve of the system of Equations (22)–(24) is defined by the quasi-steady-states of
the fast Equation (23) G

(
θg, θd

) = 0. Remembering Equations (18) and (21), we observe that
the slow curve G

(
θg, θd

) = 0 consists of the two straight lines:

θg − θd = 0 , θb − θd = 0 (25)

The slow curve may attract or repel the phase trajectories. This is determined by the stability
of the slow curve controlled by the sign of

(
∂G

/
∂θd

)
. The conditions

(
∂G

/
∂θd < 0

)
and(

∂G
/
∂θd > 0

)
define the stable (attracting) and unstable (repelling) manifolds, respectively.

The condition for marginal stability G = ∂G
/
∂θd = 0 is given by the intersection of

the two invariant lines (25). Stability of the invariant lines (25) and the phase trajectory is
illustrated in Figure 1. One can see that in the case under consideration when cool droplets
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are injected into a hot gas
(
θd0 < θb < θg0 = 0

)
, the phase trajectory IM starting at the initial

point I
(
θg = 0, θd = θd0

)
moves upwards until it reaches the stable part of the invariant line

θd = θb (at the end point M). That means that the droplet temperature increases rapidly from
the initial value θd0 up the boiling value θb. The latter is its final steady state. As follows from
Equation (18), the droplet radius decreases as the droplet temperature θd increases, and it be-
comes equal to zero at the boiling point: r (θb) = 0. Once the evaporation has been completed,
the system of Equations (22)–(24) degenerates to the conventional gaseous explosive system
with no presence of liquid phase (the evaporation of the fuel droplets is completed and the
source of the internal heat losses of the system disappears):

γ
dθg

dτ
= η

(
θg, θb

)
exp

(
θg

)
, θg (τ = 0) = 0, (26)

where η
(
θg, θb

)
is given by Equation (19) with θd = θb. Equation (26) represents the classical

Semenov model without heat losses with reactant consumption η
(
θg, θb

)
taken into account

via Equation (19).
This means that the dynamic behavior of the system (22)–(24) can be asymptotically de-

composed into the following two stages. The first one covers the fast process of heating and
evaporation of the droplets. This stage is asymptotically characterized by the constant initial
value of the gas temperature. The second stage refers to the classical fast ignition. As a result,
the total time to final ignition can be estimated as:

τignition = τdroplets + τinduction, (27)

where τdroplets is the life time of the droplets, and τinduction is the time required for the ignition
described by Equation (26) to take place (induction time). The lifetime of the droplets τdroplets

is the time during which the phase trajectory reaches the invariant line θd = θb. This can be
calculated by integrating Equation (23) from the initial value θd0 up to the boiling value θb

(assuming that the slow variable is fixed and equal to the initial value θg = 0):

τdroplets = (θb − θd0)

ε3

θb∫
θd0

r2 (θd)

(−θd) (θb − θd)
[
1 + ε4 (ν − 1) rb+1 (θd)

] dθd . (28)

The induction time τinduction is the time during which the temperature reaches the critical pre-
explosive values. It can be calculated using the classical approaches (see for example [41]).
For systems without heat losses the induction time can be approximated by the adiabatic time
(that is the time during which the temperature becomes infinite with no reactant consumption).
This time for Equation (26) can be easily found:

τinduction ≈ τad = γ

η (0, θb)

∞∫
0

exp
(−θg

)
dθg = γ

η (0, θb)
,

where η (0, θb) is given by Equation (19) with θg = 0, θd = θb. Remembering the definition
of η (0, θb) we can estimate the induction time as:

τinduction ≈ γ ε3

ε1


 θb∫

θd0

r3 (s)

(
ψf (1 − ζ (s)) − 1

)
ζ (s)

ds




−1

. (29)
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where r3 (s) and ζ (s) are given by Equations (18) and (15) respectively.

4.2. THE CASE ε3γ /ε1 � 1

In this case initially θg is a rapidly varying variable, and θd is a slowly varying variable. The
slow curve of the system of Equations (22)–(24) is defined by the quasi-steady-states of the
fast Equation (22):

F
(
θg, θd

) def= H FK
HR

(
η

(
θg, θd

)
, θg

) − ε1 r (θd) H
app
HL

(
r (θd) , θg, θd

) = 0. (30)

Stability of the slow curve is controlled by the sign of
(
∂F

/
∂θg

)
. The turning point T(θg = θT

g ,
θd = θT

d ) at which

F = ∂F
/
∂θg = 0 (31)

separates the stable (attracting) part
(
∂F

/
∂θg < 0

)
from the unstable (repelling) part

(
∂F

/
∂θg

> 0
)
. Stability of the slow curve and the phase trajectory is illustrated in Figure 2. One

can see that in the case under consideration, when cool droplets are injected into a hot gas(
θd0 < θb < θg0 = 0

)
, the phase trajectory can be divided into three parts IN, NT and TE.

The initial part of the trajectory IN is a horizontal line connecting the initial point I
(
θg = 0,

θd = θd0) with the point N
(
θg = θgi, θd = θd0

)
on the stable part of the slow curve where θgi

is given by

F
(
θ

,
gi θd0

)
= 0 . (32)

The part IN describes the initial fast cooling of the gas from the initial zero θg down to the
value θgi which is close to θd0. The system dynamics is then governed by the slow Equa-
tion (23) with θg = θg (θd) given by Equation (30). The corresponding part of the trajectory
moves along the slow curve from the point N (defined by Equation (32)) until the turning point
T (defined by Equation (31)). The last horizontal part of the trajectory TE describes the final
ignition event. The rates of changes of the slow and the fast variables become comparable in
the phase plane within a close neighborhood of the stable slow curve, due to a fine balance
between the heat release and heat-loss mechanisms. Therefore, the trajectory part INT is re-
sponsible for the delay phenomena before the final ignition. The ignition time can be estimated
using the trajectory parts IN and NT. The part IN describes the fast process of temperature
cooling; therefore the impact of the corresponding time is negligible by comparison with the
time of slow motion NT. As a result, the ignition time can be calculated from Equation (23)
as:

τignition = (θb − θd0)

ε3

θT
d∫

θd0

r2 (θd)(
θg (θd) − θd

)
(θb − θd)

[
1 + ε4 (ν − 1) rb+1 (θd)

] dθd (33)

with θg (θd) given by slow curve of Equation (30) and θT
d given by Equation (31) (turning

point T).

5. Discussion

Values of parameters in a diesel-engine combustion chamber vary widely. Our analysis will be
focused on the zone located at a comparatively large distance from the injector (far zone) and



Delayed thermal explosion in flammable gas containing fuel droplets: asymptotic analysis 409

Figure 3. Dimensionless droplet radius r = Rd/Rd0 versus dimensional droplet temperature Td as predicted by
Equation (18).

the one close to it (near zone). The values of relative droplet volume fraction ϕd in the far zone
are typically small (ϕd < 0·003), while those in the near zone are much larger (ϕd � 0·003).
The value of ϕd = 0·003 corresponds to the stoichiometric condition. The simple expression
of the volumetric liquid-fuel content

(
ϕd = 4

3π ndR
3
d0

)
allows us to choose the relevant values

of the initial droplet radius Rd0 and the droplet concentration nd . The value Rd0 = 5 µm has
been chosen for the far zone, while Rd0 = 50 µm has been chosen for the near zone. The
values of nd have been taken the same in both zones. The values of the other parameters are
assumed the same for both zones [20, 13, 19]:

E = 7.6 × 107 (J kmol−1), λg0 = 0·061 (W m−1 K
−1

), ρg0 = 23·8 (kg m−3),

Cpg = Cpfv
= 1120

(
J kg−1K

−1
)

, Tg0 = 900 (K), Qf = 4·3 × 107 (Jkg−1),

σ = 5·67 × 10−8 (W m−2 K−4), b = 0·6, κ01 = 0·28, κ11 = 0·08, Tb = 600 (K),

Td0 = 300 (K), Cd = 2830
(
J kg−1K−1

)
, L = 3·6 × 105 (J kg−1),

ρd0 = 600 (kg m−3), µf = 170 (kg kmol−1), A = 3 × 106 (s−1), nd = 8 × 1011 (m−3)

(34)

The corresponding dimensionless parameters for the two zones are given below.
‘Far zone’:

ϕd = 4·18879 × 10−4, ε1 = 2·16986 × 10−1, ε2 = 1·19394 × 102,

ε3 = 3·721 × 101, ε4 = 6·43762 × 10−4, γ = 2·18454 × 10−1 (35)

‘Near zone’:

ϕd = 4·18879 × 10−1, ε1 = 3·73236 × 10−3, ε2 = 6·94117 × 101,

ε3 = 3·721 × 10−1, ε4 = 2·56286 × 10−2, γ = 2·18454 × 10−4 (36)

The following dimensionless parameters are the same for both zones:

β = 9·84079 × 10−2, ψf = 1·19444 × 102, ε5 = 2·8, ν = 3·88889. (37)

The plot of the dimensionless droplet radius (r) vs. the dimensional droplet temperature (Td),
based on Equation (18) is presented in Figure 3 (it refers to both zones). The power ε1ε2

/
ε3

in Equation (18) represents the ratioTg0β Cd

/
L.

The analysis was conducted for ε3γ /ε1 � 1 and ε3γ /ε1 � 1. These conditions are typical
for the far and near zones, respectively.
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Figure 4. Time histories of variables for the far zone (the values of parameters are specified in Section 4).

Figure 5. Ignition time delay versus the initial gas temperature for the far zone, as predicted by Equa-
tions (27)–(29).

5.1. FAR ZONE (SMALL DROPLET CONCENTRATION)

The plots of time histories of gas temperature, liquid-fuel temperature, droplet radius and
fuel-vapor concentration obtained from the numerical solution of Equations (9)–(12), (17)
with the dimensionless parameters (35), (37) are presented in Figure 4. The sharp increase in
gas temperature and fuel-vapor concentration at times close to 2 ms indicates the explosive
behavior of the system. On the other hand, droplet evaporation time (about 0·2 ms) is small
and can be effectively ignored when estimating the overall ignition-delay time. The results
of numerical simulations are in agreement with Equations (27)–(29), which predict a total
ignition-delay time of about 2·1 ms. Also, the droplet-evaporation time inferred from Figure 4
agrees with the prediction of Equation (28). The latter gives a value of about 0·2 ms. The
induction time predicted by Equation (29) is about 1·9 ms. This may justify the application of
Equations (27)–(29) to the analysis of the dependences of the ignition time on the key system
parameters. The plot of ignition time vs. initial gas temperatures as predicted by the theoretical
results (27)–(29) is shown in Figure 5. The decrease of ignition time with increase of initial
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Figure 6. Time histories of variables for the near zone (the values of parameters are specified in Section 4).

gas temperature predicted by this figure is consistent with predictions of CFD calculations
[13].

Rather small values of τdroplets predicted by the analysis are related to the assumption about
a well-stirred mixture of fuel vapor and air in the vicinity of the droplets. If the gradient of the
gas temperature in the vicinity of the droplets is taken into account, the temperature of gas in
the immediate vicinity of droplets would drop to about 670 K. The droplet-evaporation time
for this temperature, as predicted by Equation (28) would be about 0.8 ms. This agrees with
the results of CFD calculations [19]. The values of τignition shown in Figure 5 are slightly higher
than the ones predicted by a CFD analysis (1–3 ms). This can be related to the assumption of
the Arrhenius-type chemical term in the energy equation [13]. Our simplified model, however,
correctly predicts two important features of the phenomenon. These are the small relative
contribution of τdroplets in τignition for small droplets and decrease of τignition with increasing
Tg0.

5.2. NEAR ZONE (HIGH DROPLET CONCENTRATION)

The plots of time histories of gas temperature, liquid-fuel temperature, droplet radius and fuel-
vapor concentration, obtained from the numerical solution of Equations (9)–(12), (17) with the
values of dimensionless parameters given by Equations (36) and (37), are shown in Figure 6.
As can be seen from this figure, the time of thermal explosion of gas almost coincides with the
time of droplet heating and evaporation. The ignition time delay in the near zone (about 2·2 s)
indicates that ignition actually does not take place here. Large droplets are likely to break up
and be removed from the near zone during this time. Also, the ignition in the far zone is likely
to modify the condition for the explosion in the near zone (the initial gas temperature is likely
to increase above 2500 K). Analysis of these events is beyond the scope of this paper.
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5.3. EFFECT OF RADIATION ON THE IGNITION TIME

The relative effect of thermal radiation on the total heat transfer to droplets is controlled by
the term ε4 (ν − 1) rb+1 in the heat-loss term HHL given by Equation (21). Assuming that
r = 0·5 to account for droplet evaporation, and remembering Equations (35)–(37) we obtain
ε4 (ν − 1) rb+1 = 0·0006 for the far zone and ε4 (ν − 1) rb+1 = 0·024 for the near zone. This
means that the relative effect of thermal radiation is negligible for small droplets in the far
zone, but may be important for large droplets in the near zone. This effect would increase at
the initial stage of evaporation when r is close to one and for larger droplets. Note that the total
ignition delay in the far zone is relatively insensitive to the values of combined convection and
radiation heat coefficients. As follows from Equations (27)–(29), the increase of the combined
heat-transfer coefficient by 0·06% due to the contribution of thermal radiation would decrease
the total ignition delay time by less than 0·01%. The decrease of the ignition delay time in
the near zone as estimated from Equation (33) would be about 2·4% as estimated above.
This conclusion, however, is essentially based on the assumption that the gas is optically
thick and the temperature responsible for radiation (radiation temperature) is equal to the gas
temperature. In the general case, in a diesel-engine environment, the former temperature can
be substantially larger than the latter. In this case the effect of thermal radiation would be
expected to be the dominant (see [42] for details).

6. Conclusions

The problem of thermal explosion in a flammable gas mixture with the addition of volatile fuel
droplets has been studied based on the asymptotic method of integral manifolds. Both con-
vective and radiative heating of droplets is accounted for. The model for radiative heating has
taken into account the semitransparency of droplets. A simplified model for droplet heat-up
has been used. The mathematical model has been presented as a singularly perturbed system
of four highly nonlinear ordinary differential equations involving energy and concentration
relations for the gas phase, energy equation for the liquid phase and droplets mass-balance
relation. The results of the analysis have been applied to the modelling of thermal explosion
in diesel engines. Two distinct dynamic situations have been considered depending on the
initial droplet concentration. These are ‘far zone’ (small initial liquid-volume fraction and
small droplet radii) and ‘near zone’ (large initial liquid-volume fraction and large droplet
radii). The conditions of the first zone are typical for areas in the combustion chamber that are
far from the spray injectors, while the conditions of the second zone are typical for those areas
in the combustion chamber that are relatively close to the spray injectors. In agreement with
predictions of CFD calculations, it has been pointed out that the time of small (radii less or
equal to 5 µm) droplets heating and evaporation in the far zone is smaller than the chemical
ignition delay of the fuel-vapor/air mixture. Also, in agreement with CFD predictions, the
total ignition delay is shown to decrease with increase of the initial gas temperature. In the
near zone for large (radii greater or equal to 50 µm) droplets the process has been shown
to start with a fast initial gas cooling and slight heating of droplets. This is followed by a
relatively slow heating of the gas due to chemical reaction and further droplet heating. The
total ignition delay in the near zone has been shown to be larger than in the far zone. It is
expected that, before thermal explosion in the near zone takes place, the droplets break up and
are removed from this zone. Also, the whole process is likely to be affected by the explosion
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in the far zone. In optically thick gas effects of thermal radiation are shown to be negligible
for small droplets but are noticeable for large droplets.
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